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Abstract. Erythrocyte aggregation has been consistently associated with insulin resistance, central obesity and hypertension in
the literature. Oxidative stress and chronic inflammation are almost always present in metabolic syndrome (MetS). Prooxidants
and adipocytokines generated in MetS alter erythrocyte morphology, decrease erythrocyte deformability and increase whole
blood viscosity (WBV). Increased WBV has been attributed to erythrocyte aggregation which in turn is greatly influenced by
other rheological parameters, including its membrane surface charge and plasma fibrinogen concentration. The interplay of
hemorheological factors, oxidative stress and inflammation has a detrimental effect in MetS due to the gross disturbance in
microcirculation. The hemodynamic aspect of MetS needs further research and exploration.
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1. Background

Aggregation is the tendency of an individual erythrocyte to form a collection of doublets, triplets and so
on. Two important parameters that determine the aggregation are the average size of rouleaux (aggregate
size) and the rate at which erythrocytes adhere [8]. To form the aggregates of uniform size, erythrocytes
come together through electrostatic force and are joined together by macromolecule bridging. This leads
to the formation of rouleaux which later transforms into a sphere of uniform size. The driving force
may be the reduction of the surface free energy. The aggregates contain not only erythrocytes but also
the macromolecules binding them together [30]. Increases in haematocrit do not always increase the
formation of aggregates due to the limited amount of macromolecules necessary to form the rouleaux
[30]. Erythrocyte aggregation kinetics closely follow the von Smoluchowski’s theory [8]. Impacting on
both kinetics and aggregate size is the tendency for erythrocytes to repel each other due to the negative
surface charge from sialic acid residues. Increased erythrocyte aggregation due to reduced sialic acid
concentration in membrane has been reported in human pathology [84]. Erythrocytes are attracted to each
other by van der Waals forces, and the balance of these two forces (repulsive and attractive) determines
the most stable arrangement of erythrocytes in an electrolyte solution in the absence of other forces.

Metabolic syndrome (MetS) is the constellation of cardiovascular risk factors in an individual. It consists
of multiple, interrelated risk factors of metabolic origin that appear to directly promote the development
of CVD [29]. According to NCEP ATP III guidelines [29], the individual is said to be in the state of
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MetS if he/she fulfills three criteria from the following five criteria: waist circumference >102 cm in
male and >88 cm in female; triglyceride (TG)≥150 mg/dl; high density lipoprotein cholesterol (HDL-C)
<40 mg/dl in male and <50 mg/dl in female; blood pressure ≥130/85; and fasting glucose ≥110 mg/dl.
The ultimate significance of MetS is that it helps identify individuals at high risk of both type II diabetes
and cardiovascular disease (CVD). Oxidative stress [90] and inflammation [85] are almost always present
in MetS and this further adds cardiovascular risk. Clinically, hypoxia has been associated with metabolic
dysregulation of adipose tissue in obesity [98]. Furthermore, obstructive sleep apnea has been associated
with MetS and its components [70]. Hypoxia associated with some metabolic diseases could be due to
an altered hemorheology. Rate of oxygen release from the erythrocytes also depends upon erythrocyte
morphology [50]. Using rat skeletal muscle venules as a model, Bishop et al. [9] demonstrated that
erythrocyte aggregates in vivo decreases velocity of blood flow in venules. Reduction in flow velocity
due to erythrocyte aggregates was markedly significant at low shear rate flow when compared to high
shear rate flow [9]. Increased WBV is more marked at low shear rate flow [12, 15]. MetS has been
constantly associated with various aspects of hemorheology [38, 39]. In this review, we discuss erythrocyte
aggregation and its effect in different components of MetS including oxidative stress and inflammation.

2. Erythrocyte aggregation and diabetes mellitus

Erythrocyte aggregation plays an important role in the pathophysiology of blood circulation [97] and
in the complications developed due to DM [57, 91, 110]. Increased erythrocyte aggregation has been
correlated with the complications of DM [25]. Type II diabetic patients with clinically evident late
complications have elevated erythrocyte aggregation regardless of the degree of metabolic control [25].
Husstedt et al. showed that increased degree of erythrocyte aggregation is related to the progression of
neuropathy in DM subjects [44]. Nam et al. showed that erythrocyte aggregation was increased when
they were incubated in glucose rich plasma. Increased erythrocyte aggregation was found with increased
concentration of glucose which indicates hyperglycemia could be a factor that alters hemorheology [67].
Foresto et al. reported spherical shape of erythrocyte aggregates in DM instead of the common cylindrical
shape of typical rouleaux [33]. Increased erythrocyte aggregation in DM was significantly correlated with
glycosylated haemoglobin (HbA1c) in a study by Devehat et al. [53] which emphasizes the importance
of glycemic control in DM. The complications of DM are probably due to altered hemorheological
parameters like erythrocyte morphology, deformability, viscosity and aggregation. Thus, improvement
in blood rheology through normalization of blood glucose and glycemic control could be beneficial to
diabetic patients.

3. Erythrocyte aggregation and hypertension

Blood pressure depends on the shear rate of blood flow and total peripheral vascular resistance. These
two factors in turn depend on several rheological factors like erythrocyte aggregation, deformability,
hematocrit, vessel geometry and plasma viscosity [71, 89]. The mechanical and biochemical charac-
teristics of erythrocytes are altered in hypertension [64]. There is a general membranous defect in the
essential hypertension [66] with altered transportation of ions across the erythrocytic membrane [73–75].
In a study involving fifty two patients with essential arterial hypertension, it was shown that increased sys-
tolic, diastolic and mean arterial pressure were correlated with increased erythrocyte aggregation [106].
The hypertensive subjects showed increased WBV, decreased erythrocyte deformability and increased
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erythrocyte aggregation when compared with normotensive subjects. The increased left ventricular mass
in the hypertensive subjects was correlated with increased erythrocyte aggregation [106]. Erythrocyte
aggregation index as well as disaggregation shear rate threshold (shear stress needed to break up the aggre-
gated erythrocytes or shear resistance of erythrocyte aggregates) was found to be higher in hypertensive
subjects when compared with normotensive subjects [80].

Treatment of renal anaemic patients with erythropoietin increases blood pressure [78]. Sandhagen
suggested that decreases in erythrocyte fluidity could be an important reason for resultant increase in
blood pressure [89]. Pirrelli has reported that altered hemorheology could be one of the numerous causes
of hypertension [71]. He argued that chronic increased shear stress and hyperviscosity changes the
physical conditions of vascular wall or in general changes the vascular geometry. Altered hemorheology
and increased release of endothelial vasoactive factors induce an increase in peripheral resistance which
can increase arterial hypertension [71]. Furthermore, the anti-hypertensive drugs, Ca++ channel blocker
and ACE inhibitor have been shown to improve hemorheology in hypertensive subjects [49].

4. Erythrocyte aggregation and obesity

In 1999, Meiselman questioned whether altered hemorheology is the cause or effect of hypertension
and argued that the resolution of the chicken versus egg problem has not been achieved [62]. In 2002,
Bogar in an interesting way replied to the question and, in his own words said that hemorheology and
hypertension are not “chicken or egg” but are two chickens from similar eggs. The egg he referred to was
obesity. He claimed that being overweight and a sedentary life style are the major causes behind abnormal
hemorheology and other metabolic interrelated diseases [10]. In a study by Vaya et al. 136 morbidly obese
subjects and an equal number of normal weight healthy volunteers were recruited to study the effect of
obesity on hemorheological parameters [100]. Morbidly obese was defined as body mass index (BMI)
>40 kg/m2. Fibrinogen, plasma viscosity, erythrocyte aggregation (M and M1) was significantly higher
and erythrocyte deformability was significantly lower in obese subjects when compared with normal
weight controls. No significant differences in hemorheological parameters were found between obese
subjects when they were further divided into MetS and non-MetS group. Similarly, no differences in
hemorheological parameters were found when obese subjects without any other components of MetS were
compared with obese subjects with at least one other components of MetS [100]. This study suggests that
obesity is the prime cause for the altered erythrocyte rheology. Similarly, Valensi et al. also showed that
erythrocyte aggregation was higher in obese subjects when compared with normal weight individuals [99].

To study the effect of weight loss on hemorheological parameters, Fanari et al. recruited twenty obese
subjects without any other cardiovascular complications and diabetes. Hemorheological parameters were
measure before and after three months of treatment with low calorie diet. After dieting, erythrocyte aggre-
gation was decreased when compared with the basal value [31]. The decrease in erythrocyte aggregation
and improvement in hemorheology after weight loss has been reported in several other studies [41, 72].
Improvements in rheology after weight loss in obese subjects could be due to complex biochemical and
endocrine changes after weight loss. In a study involving sixty-seven severely obese subjects (BMI ≥35),
erythrocyte aggregation was shown to decrease after weight loss and it was claimed that increased ery-
throcyte aggregation in obesity is the result of increased insulin resistance rather that elevated fibrinogen
or dyslipidemia [96].

Adipocytokines and inflammatory markers are high in obesity [42, 43]. CRP was shown to be high
in morbidly obese cases and multivariate regression analysis showed that CRP predicted erythrocyte
aggregability [100]. Berliner et al. [7] showed that erythrocyte aggregation could be used as a biomarker for
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the detection of low grade systemic inflammation. Through the help of receiver operating characteristics
curve, the authors showed that erythrocyte aggregation is superior to other commonly used markers such
as fibrinogen and high-sensitive C-reactive protein (hsCRP) to demonstrate the ongoing inflammation
[7]. In a group of 234 individuals with and without atherothrombotic risk factors, it was shown that
fibrinogen contributed strongly towards the erythrocyte aggregation [2]. Thirty obese subjects without
any underlying inflammatory or malignant conditions and thirty-five non-obese healthy volunteers were
analysed for erythrocyte aggregation and markers of inflammation. Highly significant differences were
noted for markers of inflammation and for the degree of erythrocyte aggregation between the two groups.
There was also a significant correlation between BMI and the degree of erythrocyte aggregation and
erythrocyte sedimentation rate, fibrinogen, hs-CRP, and leukocyte count. The authors concluded that
increased erythrocyte aggregation in obesity could be due to the inflammation present in obesity [88].

5. Erythrocyte aggregation and dyslipidemia

The majority of the lipids present in the erythrocyte membrane originate from plasma lipoproteins
as erythrocyte cannot synthesize lipids [36, 52]. Erythrocytes’ membrane cholesterol content is high
in hypercholesterolemic patients and LDL is mainly responsible for increased cholesterol delivery to
erythrocyte [23, 92]. Increased level of cholesterol changes the erythrocyte membranous properties [47,
60]. Lipoprotein lipase (LPL) deficient mice were used to study the effect of severe hypertriglyceridemia
on hemorheological parameters. Erythrocyte deformability and electrophoretic mobility was decreased
whereas osmotic fragility was increased in LPL deficient mice when compared with control mice [109].
In the same way, erythrocyte of LPL deficient mice showed irregular protrusions on its surface as revealed
from scanning electron microscopy [109].

After a direct absorption of lipoproteins (DALI) apheresis procedures for average of five consecu-
tive sessions in six hypercholesterolemic patients, erythrocyte aggregation was reduced by 42% and
WBV by 10% [11]. In average, after DALI apheresis, LDL-C was reduced by 66%, apolipoprotein-A
(LpA) by 66%, very-low-density lipoprotein (VLDL)-cholesterol by 51%, TG by 28%, and fibrinogen
by 18% [11]. Ten heterozygous familial hypercholesterolemic patients showed a significant reduction in
plasma viscosity and erythrocyte aggregation along with LDL-C and fibrinogen after undergoing first four
heparin-induced extracorporeal lipoprotein precipitation treatment [93]. Similarly, the beneficial effects
of lipid lowering therapy by the drug statin in hemorheology have also been seen in other studies [1, 46,
56, 61]. A significant positive effect on blood hemorheology mediated by the efficient reduction of choles-
terol indicates that dyslipidemia could be one of the prime causes of increased erythrocyte aggregation.
Erythrocyte aggregation is also shown to be increased in subjects with primary hyperlipoproteinemia
[65, 101]. Erythrocyte aggregation was higher in hyperglycemic patients when compared with normal
controls and it was further higher in hypercholesterolemic hyperglycemic patients when compared to
hyperglycemic patients alone [3].

Ultrasound duplex scans showed increased in-vivo erythrocyte aggregation in veins and arteries in
hyperlipidemic subjects compared to normolipidemic subjects [21, 22]. In a multiple regression model,
HDL2-C, LpA-I, and LpA-I/A-II emerged as significant factors influencing erythrocyte aggregation index
and disaggregation shear rate threshold among hypercholesterolemic subjects [79]. HDL-C has been
inversely correlated with erythrocyte aggregation in normal subjects as well as in coronary heart disease
patients [87]. It has been demonstrated that erythrocytes permeability in vivo is impaired by high levels
of TC and LDL-C [54]. HDL inhibits Ca2+ induced procoagulant activity on erythrocyte membranes
[28]. HDL also competes with LDL for binding with erythrocyte membrane, competitively inhibiting
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the LDL-C induced erythrocyte aggregation and thus decreases WBV [94]. HDL-C also plays a key role
in protecting erythrocyte membranes against oxidative damage [32]. Thus, HDL-C may counteract the
unfavourable effects of macromolecules such as fibrinogen to reduce the erythrocyte aggregation [79].

6. Erythrocyte aggregation and oxidative stress

The erythrocyte is exposed to free radicals from both within the cell and the extracellular environ-
ment. It is estimated that between 1 and 3% of oxygen consumed by aerobic cells becomes a reactive
oxygen species [13]. Erythrocyte antioxidant defences are important in maintaining hemoglobin iron
in the reduced state and for protecting the plasma membrane of the cell from lipid peroxidation. Ery-
throcyte possess multiple enzymatic and non-enzymatic antioxidant defense mechanisms to prevent
oxidative damages, however during oxidative stress, these mechanisms can become exhausted [82, 83].
Fifty MetS cases and twenty-five healthy controls were recruited to study the erythrocyte redox balance
and membrane properties in the study of Kowalczyk et al. [51]. Erythrocyte membrane fluidity and con-
formation changes of membrane proteins were studied by electron paramagnetic resonance technique.
Subjects with MetS showed altered physical confirmation of erythrocytes’ cytoskeleton proteins. There
was an unfavorable alteration in erythrocyte lipid membrane fluidity and erythrocyte of MetS subjects
showed increased osmotic fragility. Malondialdehyde (MDA) concentration in erythrocytes of MetS was
significantly high whereas there were no significant changes in the activity of glutathione peroxidase,
catalase and superoxide dismutase when compared with healthy controls. Membrane lipid peroxidation
was considered as one possible cause of altered membrane properties in the study [51]. MDA can cause
polymerization of membrane components and thus increase the aminophospholipid bilayer rigidity [17,
45]. Also, this peroxidant injury initiated in the lipid component of the membrane can be transmitted to
neighboring substances such as membrane proteins [45]. These polymerization reactions consequently
increase membrane rigidity.

Calcium was shown to decrease erythrocyte deformability [102]. Watanabe et al. has suggested that
there is passive accumulation of calcium inside erythrocyte due to membrane disorganization by free
radicals [102]. It is also suggested that increases in insulin concentration impairs the erythrocytic
calcium-ATPase activity leading to increased intraerythrocytic calcium concentration [37]. Accumu-
lation of calcium inside the cell further amplifies the damage of free radicals to the membranes [102].
Erythrocyte aggregation was increased and deformability was decreased by the effect of superoxide
anion generated outside the erythrocyte membrane [5]. When superoxide anion was generated inside
the erythrocyte membrane by the phenazine methosulfate, no significant increase in erythrocyte aggre-
gation was noticed despite reduced deformability [5]. An antioxidant enzymes superoxide dismutase
and catalase were shown to protect erythrocyte membrane alterations against activated granulocytes [4].
Incubation of healthy erythrocyte with oxidant diamide and ferrous sulphate/ascorbate decreased ery-
throcyte deformability and increased erythrocyte aggregation [19]. These alterations in hemorheology
can be minimised by thiol containing antioxidants dithiothreitol and N-acetylcysteine [20]. Antioxidants
also decrease erythrocyte aggregation induced by photodynamic treatment [6]. In the same way, Vitamin
C has been reported to prevent cholesterol-induced microcirculatory changes in rabbits [34].

7. Discussion: The relationship between erythrocyte aggregation and metabolic syndrome

MetS has been associated with altered hemorheology [108]. Insulin resistance [96] and obesity [31]
have been suggested as the main factors behind altered rheology in MetS. Decreased blood flow rate
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Fig. 1. Altered hemorheology is the bridge that links MetS with cardiovascular complications. Oxidative stress and chronic
inflammation decreases erythrocyte deformability and alter erythrocyte morphology. Decrease deforming capacity and altered
morphology increase erythrocyte tendency to aggregate. Decrease erythrocyte deformation, increase erythrocyte aggregation and
altered erythrocyte morphology increases whole blood viscosity. Erythrocyte aggregates and morphologically altered erythrocyte
could interact with the endothelium causing endothelial activation. Altered hemorheology and endothelial activation leads to
cardiovascular complications.

and altered hemorheology has been shown previously in the microvasculature of the optic nerve among
patients with primary open angle glaucoma [40, 104]. Lominadze et al. [59] clarified from their exper-
iment in the rat model that the expression of erythrocyte protein is altered in hypertension and this
alteration is responsible for increased erythrocyte/fibrinogen interaction rather than only due to increased
fibrinogen concentration [59]. Lominadze and Dean [58] also suggested that a specific binding mecha-
nism is involved in fibrinogen induced erythrocyte aggregation. The decrease in erythrocyte aggregation
in diabetic subjects after intense management was not correlated with the changes in glycemic control,
fibrinogen or lipid profile [18]. Hence, increased in erythrocyte aggregation in MetS could also be due
to the alterations in erythrocyte intrinsic properties. In the study of Elishkevitz et al. [27] erythrocyte
aggregation was associated with inflammatory markers but not with HbA1c. We believe that, inflamma-
tory markers and prooxidant generated in MetS and its components [24, 35, 42, 55, 69, 76, 103, 105] are
mainly responsible for altered rheology.

Oxidative stress decreases the erythrocyte deformability [45] and alter its morphology [95, 107]. Mod-
ifications of the membrane may lead less deformable erythrocyte to aggregate or may create a favourable
environment to aggregate [81]. Rigid erythrocyte and erythrocyte aggregates damage blood vessels [71].
Morphologically altered erythrocyte and erythrocyte aggregates could interact with the endothelium fur-
ther amplifying inflammation. Increased erythrocyte aggregation [16] and morphological transformation
[63] ultimately leads to increased WBV and reduced microcirculatory flow which is unfavourable to
cardiovascular system. Decreased blood flow rate and altered hemorheology has been shown previously
in the microvasculature of the optic nerve among patients with primary open angle glaucoma. Blood pres-
sure is raised following increased WBV [71, 89]. Increased erythrocyte aggregation has been associated
with cardiovascular complications [68, 77, 86]. Peripheral vascular resistance is increased when WBV
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increases which ultimately increases the pumping requirement of the heart [26]. This results in higher
frictional force (shear stress) acting on the endothelium further increasing the risk of CVD [48] (Fig. 1).
Intermittent hypoxia experienced by various tissues due to altered hemodynamics and hemorheology
aggravate oxidative stress further complicating the scenario [14]. Thus, we propose altered hemorheology
as the bridge that links MetS with CVD.

8. Conclusions

MetS is a state of oxidative stress and chronic inflammation. Prooxidant and inflammatory markers
generated in MetS alter the hemorheology including erythrocyte aggregation. Cardiovascular complica-
tions of MetS are also associated with erythrocyte aggregation. Hence, Erythrocyte aggregation could be a
useful biomarker in the assessment of MetS, its severity and progression. Since, MetS has a hemodynamic
basis; its definition should be updated to incorporate hemorheological parameters.
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